Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.701
Filtrar
1.
Harmful Algae ; 133: 102585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485435

RESUMO

Cyanobacteria can reach high densities in eutrophic lakes, which may cause problems due to their potential toxin production. Several methods are in use to prevent, control or mitigate harmful cyanobacterial blooms. Treatment of blooms with low concentrations of hydrogen peroxide (H2O2) is a promising emergency method. However, effects of H2O2 on cyanobacteria, eukaryotic phytoplankton and zooplankton have mainly been studied in controlled cultures and mesocosm experiments, while much less is known about the effectiveness and potential side effects of H2O2 treatments on entire lake ecosystems. In this study, we report on three different lakes in the Netherlands that were treated with average H2O2 concentrations ranging from 2 to 5 mg L-1 to suppress cyanobacterial blooms. Effects on phytoplankton and zooplankton communities, on cyanotoxin concentrations, and on nutrient availability in the lakes were assessed. After every H2O2 treatment, cyanobacteria drastically declined, sometimes by more than 99%, although blooms of Dolichospermum sp., Aphanizomenon sp., and Planktothrix rubescens were more strongly suppressed than a Planktothrix agardhii bloom. Eukaryotic phytoplankton were not significantly affected by the H2O2 additions and had an initial advantage over cyanobacteria after the treatment, when ample nutrients and light were available. In all three lakes, a new cyanobacterial bloom developed within several weeks after the first H2O2 treatment, and in two lakes a second H2O2 treatment was therefore applied to again suppress the cyanobacterial population. Rotifers strongly declined after most H2O2 treatments except when the H2O2 concentration was ≤ 2 mg L-1, whereas cladocerans were only mildly affected and copepods were least impacted by the added H2O2. In response to the treatments, the cyanotoxins microcystins and anabaenopeptins were released from the cells into the water column, but disappeared after a few days. We conclude that lake treatments with low concentrations of H2O2 can be a successful tool to suppress harmful cyanobacterial blooms, but may negatively affect some of the zooplankton taxa in lakes. We advise pre-tests prior to the treatment of lakes to define optimal treatment concentrations that kill the majority of the cyanobacteria and to minimize potential side effects on non-target organisms. In some cases, the pre-tests may discourage treatment of the lake.


Assuntos
Cianobactérias , Fitoplâncton , Animais , Peróxido de Hidrogênio , Lagos/microbiologia , Zooplâncton , Ecossistema , Cianobactérias/fisiologia
2.
Harmful Algae ; 133: 102599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485445

RESUMO

Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.


Assuntos
Cianobactérias , Cianobactérias/fisiologia
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366257

RESUMO

Prediction of the complex cyanobacteria-environment interactions is vital for understanding harmful bloom formation. Most previous studies on these interactions considered specific properties of cyanobacterial cells as representative for the entire population (e.g. growth rate, mortality, and photosynthetic capacity (Pmax)), and assumed that they remained spatiotemporally unchanged. Although, at the population level, the alteration of such traits can be driven by intraspecific competition, little is known about how traits and their plasticity change in response to environmental conditions and affect the bloom formation. Here we test the hypothesis that intraspecific variations in Pmax of cyanobacteria (Microcystis spp.) play an important role in its population dynamics. We coupled a one-dimensional hydrodynamic model with a trait-based phytoplankton model to simulate the effects of physical drivers (turbulence and turbidity) on the Pmax of Microcystis populations for a range of dynamic conditions typical for shallow eutrophic lakes. Our results revealed that turbulence acts as a directional selective driver for changes in Pmax. Depending on the intensity of daily-periodic turbulence, representing wind-driven mixing, a shift in population-averaged phenotypes occurred toward either low Pmax, allowing the population to capture additional light in the upper layers, or high Pmax, enhancing the efficiency of light utilization. Moreover, we observed that a high intraspecific diversity in Pmax accelerated the formation of surface scum by up to more than four times compared to a lower diversity. This study offers insights into mechanisms by which cyanobacteria populations respond to turbulence and underscores the significance of intraspecific variations in cyanobacterial bloom formation.


Assuntos
Cianobactérias , Microcystis , Lagos/microbiologia , Monitoramento Ambiental , Cianobactérias/fisiologia , Microcystis/fisiologia , Fitoplâncton , Eutrofização
4.
Harmful Algae ; 131: 102563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212085

RESUMO

Cyanobacterial blooms are one of the most significant threats to global water security and freshwater biodiversity. Interactions among multiple stressors, including habitat degradation, species invasions, increased nutrient runoff, and climate change, are key drivers. However, assessing the role of anthropogenic activity on the onset of cyanobacterial blooms and exploring response variation amongst lakes of varying size and depth is usually limited by lack of historical records. In the present study we applied molecular, paleolimnological (trace metal, Itrax-µ-XRF and hyperspectral scanning, chronology), paleobotanical (pollen) and historical data to reconstruct cyanobacterial abundance and community composition and anthropogenic impacts in two dune lakes over a period of up to 1200 years. Metabarcoding and droplet digital PCR results showed very low levels of picocyanobacteria present in the lakes prior to about CE 1854 (1839-1870 CE) in the smaller shallow Lake Alice and CE 1970 (1963-1875 CE) in the larger deeper Lake Wiritoa. Hereafter bloom-forming cyanobacteria were detected and increased notably in abundance post CE 1984 (1982-1985 CE) in Lake Alice and CE 1997 (1990-2007 CE) in Lake Wiritoa. Currently, the magnitude of blooms is more pronounced in Lake Wiritoa, potentially attributable to hypoxia-induced release of phosphorus from sediment, introducing an additional source of nutrients. Generalized linear modelling was used to investigate the contribution of nutrients (proxy = bacterial functions), temperature, redox conditions (Mn:Fe), and erosion (Ti:Inc) in driving the abundance of cyanobacteria (ddPCR). In Lake Alice nutrients and erosion had a statistically significant effect, while in Lake Wiritoa nutrients and redox conditions were significant.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Cianobactérias/fisiologia , Fósforo/análise , Ecossistema , Biodiversidade
5.
Water Res ; 250: 120977, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128306

RESUMO

Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Cianobactérias/fisiologia , Eutrofização
6.
J Environ Manage ; 349: 119518, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944321

RESUMO

This forecasting approach may be useful for water managers and associated public health managers to predict near-term future high-risk cyanobacterial harmful algal blooms (cyanoHAB) occurrence. Freshwater cyanoHABs may grow to excessive concentrations and cause human, animal, and environmental health concerns in lakes and reservoirs. Knowledge of the timing and location of cyanoHAB events is important for water quality management of recreational and drinking water systems. No quantitative tool exists to forecast cyanoHABs across broad geographic scales and at regular intervals. Publicly available satellite monitoring has proven effective in detecting cyanobacteria biomass near-real time within the United States. Weekly cyanobacteria abundance was quantified from the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite as the response variable. An Integrated Nested Laplace Approximation (INLA) hierarchical Bayesian spatiotemporal model was applied to forecast World Health Organization (WHO) recreation Alert Level 1 exceedance >12 µg L-1 chlorophyll-a with cyanobacteria dominance for 2192 satellite resolved lakes in the United States across nine climate zones. The INLA model was compared against support vector classifier and random forest machine learning models; and Dense Neural Network, Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Gneural Network (GNU) neural network models. Predictors were limited to data sources relevant to cyanobacterial growth, readily available on a weekly basis, and at the national scale for operational forecasting. Relevant predictors included water surface temperature, precipitation, and lake geomorphology. Overall, the INLA model outperformed the machine learning and neural network models with prediction accuracy of 90% with 88% sensitivity, 91% specificity, and 49% precision as demonstrated by training the model with data from 2017 through 2020 and independently assessing predictions with data from the 2021 calendar year. The probability of true positive responses was greater than false positive responses and the probability of true negative responses was less than false negative responses. This indicated the model correctly assigned lower probabilities of events when they didn't exceed the WHO Alert Level 1 threshold and assigned higher probabilities when events did exceed the threshold. The INLA model was robust to missing data and unbalanced sampling between waterbodies.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Estados Unidos , Humanos , Lagos/microbiologia , Teorema de Bayes , Cianobactérias/fisiologia , Qualidade da Água , Monitoramento Ambiental
7.
Harmful Algae ; 130: 102527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061818

RESUMO

Microcystis species not only produce toxic cyanobacterial blooms, but can be a significant source of taste and odour. Previous studies have associated foul-smelling volatile organic sulfur compounds (VOSCs) with Microcystis blooms, but have largely attributed these compounds to bacterial bloom decomposition. However, earlier reports of the production of isopropylthio compounds by several Microcystis strains suggests that these cyanobacteria may themselves be a source of these VOSCs. Sulphur compounds have been shown to play important semiochemical roles in algal cell protection and grazer interactions in marine systems, but little is known about the production and chemical ecology of freshwater cyanobacterial VOSCs. To address this knowledge gap, we undertook the first detailed investigation of the biochemistry, ecophysiology and semiochemistry of these compounds and their production by Microcystis, and tested the hypothesis that they act as multifunctional semiochemicals in processes related to cell protection and grazer defence. Using short-term incubations and an adapted headspace-GC-MS technique, we investigated VOSC production by axenic and non-axenic strains, and verified that isopropylthio compounds are in fact produced by these cyanobacteria, identifying 5 isopropyl moiety-containing VOSCs (isopropylthiol (ISH), isopropylmethyl sulfide, isopropyl methyl disulfide, diisopropyl disulfide (ISSI) and diisopropyl trisulfide) as well as methanethiol in three strains. Further studies with the axenic strain Microcystis PCC 7806 using different light regimes, metabolic inhibitors (sodium azide, DCMU), the antioxidant enzyme catalase and stable labelled precursors (hydrogencarbonate, acetates and sulfate) demonstrated that ISH is a true exo-metabolite, synthesized via the acetate pathway. It is actively produced and continuously excreted by the cyanobacteria during growth, with minimal internal storage or post-lysis catalytic generation. The molar ratios of the redox pair ISH/ISSI are not directly involved in the photosynthetic and respiratory electron transport chains, but dependant on the redox state of the cell - likely mediated by reactive oxygen species (ROS), as shown by a marked effect of catalase. These results, along with toxicological and behavioural assays using the two aquatic invertebrates Thamnocephalus platyurus and Daphnia magna indicate that ISH plays multiple important physiological and ecological roles. It acts as an effective antioxidant against high ROS levels, as often experienced in surface blooms, it elicits avoidance-related behavioural responses in grazer communities and at high levels, it can be toxic to some invertebrates.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Catalase/metabolismo , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Cianobactérias/fisiologia
8.
Sci Total Environ ; 905: 167211, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730025

RESUMO

Biological soil crusts (biocrusts) are widely distributed in global drylands and have multiple significant roles in regulating dryland soil and ecosystem multifunctionality. However, maps of their distribution over large spatial scales are uncommon and sometimes unreliable, because our current remote sensing technology is unable to efficiently discriminate between biocrusts and vascular plants or even bare soil across different ecosystem and soil types. The lack of biocrust spatial data may limit our ability to detect risks to dryland function or key tipping points. Here, we indirectly mapped biocrust distribution in China's drylands using spatial prediction modeling, based on a set of occurrences of biocrusts (379 in total) and high-resolution soil and environmental data. The results showed that biocrusts currently cover 13.9 % of China's drylands (or 5.7 % of China's total area), with moss-, lichen-, and cyanobacterial-dominated biocrusts each occupying 5.7 % to 10.7 % of the region. Biocrust distribution is mainly determined by soil properties (soil type and contents of gravel and nitrogen), aridity stress, and altitude. Their most favorable habitat is arenosols with low contents of gravel and nitrogen, in climate with a drought index of 0.54 and an altitude of about 500 m. By 2050, climate change will lead to a 5.5 %-9.0 % reduction in biocrust cover. Lichen biocrusts exhibit a high vulnerability to climate change, with potential reductions of up to 19.0 % in coverage. Biocrust cover loss is primarily caused by the combined effects of the elevated temperature and increased precipitation. Our study provides the first high-resolution (250 × 250 m) map of biocrust distribution in China's drylands and offers a reliable approach for mapping regional or global biocrust colonization. We suggest incorporating biocrusts into Earth system models to identify their significant impact on global or regional-scale processes under climate change.


Assuntos
Briófitas , Cianobactérias , Líquens , Ecossistema , Líquens/fisiologia , Cianobactérias/fisiologia , Briófitas/fisiologia , Solo , Mudança Climática , Microbiologia do Solo , Nitrogênio , China
9.
J Environ Manage ; 345: 118693, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598495

RESUMO

Effects of climate change and nutrient load caused by human activities on lake phytoplankton blooms have attracted much attention globally. However, their roles and synergistic effects on phytoplankton biomass and community historical succession are not well understood, especially for meso-eutrophic plateau lakes. In this study, a multi-year (1997-2022) monthly dataset including hydro-chemical and meteorological indicators of the meso-eutrophic plateau lake Erhai in China, was used to explore the contributions of climate change and nutrients on phytoplankton biomass variation and community succession. Phytoplankton biomass increased from 1997 to 2006, slowly decreased from 2006 to 2015, then increased again from 2015 to 2022, according to a generalised additive model (GAM). Alongside warming, nitrogen, phosphorus and organic matter are key drivers of long-term interannual variation in phytoplankton biomass and historical succession of the phytoplankton community. The extensive blooms in recent years were strongly associated with both organic matter accumulation and global warming. Phytoplankton biomass in northern and southern districts was greater than in central areas, with Cyanophyta and Pyrrophyta dominating in the north and Chlorophyta prevalent in the south. Since 2015, phytoplankton diversity has increased significantly, and biomass has declined in the southern district but increased markedly in the northern district. Spatial heterogeneity was caused by the spatial distribution of nutrients and the buoyancy regulation capacity of cyanobacteria. The results demonstrate that bloom mitigation responds strongly to nitrogen and phosphorus control in meso-eutrophic lakes, therefore preventing and controlling blooms through nitrogen and phosphorus reduction is still an effective measure. Given the accumulation of organic matter in recent years, synergistic control of organic matter and total nitrogen and phosphorus could effectively reduce the risk of cyanobacterial and dinoflagellate blooms.


Assuntos
Cianobactérias , Fitoplâncton , Humanos , Fitoplâncton/fisiologia , Biomassa , Lagos/microbiologia , Estações do Ano , Cianobactérias/fisiologia , China , Fósforo/análise , Nitrogênio/análise , Eutrofização
10.
Sci Total Environ ; 894: 165064, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355112

RESUMO

Quantitative assessments of the contributions of various environmental factors to cyanobacterial blooms at different timescales are lacking. Here, the hourly cyanobacterial bloom intensity (CBI) index, a proxy for the intensity of surface cyanobacterial biomass, was obtained from the geostationary satellite sensor Geostationary Ocean Color Imager (GOCI) over the years 2011-2018. Generalized additive model was applied to determine the responses of monthly and hourly CBI to the perturbations of meteorological factors, water stability and nutrients, with variation partitioning analysis used to analyze the relative importance of the three groups of variables to the inter-monthly variation of diurnal CBI in each season. The effects of environmental factors on surface cyanobacterial blooms varied at different timescales. Hourly CBI increased with increasing air temperature up to 18 °C but decreased sharply above 18 °C, whereas monthly CBI increased with increasing air temperature up to 30 °C and stabilized thereafter. Among all the environmental factors, air temperature had the largest contribution to the intra-daily variation in CBI; water stability had the highest explanation rate for the inter-monthly variation of diurnal CBI during summer (42.3 %) and autumn (56.9 %); total phosphorus explained the most variation in monthly CBI (18.5 %). Compared with cyanobacterial biomass (CB) in the water column, high light and low wind speed caused significantly lower CBI in July and higher CBI in November respectively. Interestingly, cyanobacterial blooms at the hourly scale were aggravated by climate warming during winter and spring but inhibited during summer and autumn. Collectively, this study reveals the effects of environmental factors on surface cyanobacterial blooms at different timescales and suggests the consideration of the hourly effect of air temperature in short-term predictions of cyanobacterial blooms.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Meteorologia , Monitoramento Ambiental , Eutrofização , Cianobactérias/fisiologia , Nutrientes , Água , China
11.
Harmful Algae ; 124: 102406, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164561

RESUMO

As a tropical filamentous cyanobacterium, Raphidiopsis raciborskii has attracted much attention due to its expansion and toxin production. However, the mechanisms of its expansion to temperate regions have not been studied in detail. To address the potential strategies, the physiological and metabolomic profiles of R. raciborskii FACHB 1096 isolated from a temperate lake in China were determined and measured at different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 32 °C). The results demonstrated that temperature significantly changed cell viability, chlorophyll a content, specific growth rate, Chl a fluorescence, and filamentous shape of R. raciborskii. Low temperature decreased cell viability, specific growth rate, and photosynthetic efficiency, while the proportion of akinete and carbon fixation per unit cell were significantly increased compared with high temperature (32 °C). A constructed unimodal model indicated that filament length, cell volume, and cell length/width of R. raciborskii were significantly reduced in both high and low temperature environments. Under low-temperature conditions, R. raciborskii suffered different degrees of oxidative damage and produced corresponding antioxidant substances to resist oxidative stress, suggesting that low temperature changes the metabolic level of the cells, causing the cells to gradually switch from development to defense. Metabolomic data further confirmed that temperature change induced shifts in metabolic pathways in R. raciborskii, including starch and sucrose metabolic pathways, glutathione metabolic pathways, and the pentose phosphate pathways (PPP), as well as metabolic pathways related to the tricarboxylic acid (TCA) cycle. Our results indicated that the trade-offs of R. raciborskii cells among the growth, cell size, and metabolites can be significantly regulated by temperature, with broad implications for its global expansion in temperate waterbodies.


Assuntos
Cianobactérias , Cylindrospermopsis , Temperatura , Clorofila A/metabolismo , Cianobactérias/fisiologia
12.
J Biol Chem ; 299(7): 104839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209822

RESUMO

Photosystem II (PSII) utilizes light energy to split water, and the electrons extracted from water are transferred to QB, a plastoquinone molecule bound to the D1 subunit of PSII. Many artificial electron acceptors (AEAs) with molecular structures similar to that of plastoquinone can accept electrons from PSII. However, the molecular mechanism by which AEAs act on PSII is unclear. Here, we solved the crystal structure of PSII treated with three different AEAs, 2,5-dibromo-1,4-benzoquinone, 2,6-dichloro-1,4-benzoquinone, and 2-phenyl-1,4-benzoquinone, at 1.95 to 2.10 Å resolution. Our results show that all AEAs substitute for QB and are bound to the QB-binding site (QB site) to receive electrons, but their binding strengths are different, resulting in differences in their efficiencies to accept electrons. The acceptor 2-phenyl-1,4-benzoquinone binds most weakly to the QB site and showed the highest oxygen-evolving activity, implying a reverse relationship between the binding strength and oxygen-evolving activity. In addition, a novel quinone-binding site, designated the QD site, was discovered, which is located in the vicinity of QB site and close to QC site, a binding site reported previously. This QD site is expected to play a role as a channel or a storage site for quinones to be transported to the QB site. These results provide the structural basis for elucidating the actions of AEAs and exchange mechanism of QB in PSII and also provide information for the design of more efficient electron acceptors.


Assuntos
Elétrons , Modelos Moleculares , Oxidantes , Complexo de Proteína do Fotossistema II , Benzoquinonas/química , Transporte de Elétrons , Oxidantes/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Quinonas/química , Quinonas/metabolismo , Água/química , Sítios de Ligação , Estrutura Terciária de Proteína , Difração de Raios X , Cianobactérias/química , Cianobactérias/fisiologia
13.
Nat Ecol Evol ; 7(5): 756-767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012377

RESUMO

Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Carotenoides/metabolismo
14.
Water Res ; 236: 119946, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084577

RESUMO

Although nutrient reduction has been used for lake eutrophication mitigation worldwide, the use of this practice alone has been shown to be less effective in combatting cyanobacterial blooms, primarily because of climate change. In addition, quantifying the climate change contribution to cyanobacterial blooms is difficult, further complicating efforts to set nutrient reduction goals for mitigating blooms in freshwater lakes. This study employed a continuous variable Bayesian modeling framework to develop a model to predict spring cyanobacterial bloom areas and frequencies (the responses) using nutrient levels and climatic factors as predictors. Our results suggested that both spring climatic factors (e.g., increasing temperature and decreasing wind speed) and nutrients (e.g., total phosphorus) played vital roles in spring blooms in Lake Taihu, with climatic factors being the primary drivers for both bloom areas and frequencies. Climate change in spring had a 90% probability of increasing the bloom area from 35 km2 to 180 km2 during our study period, while nutrient reduction limited the bloom area to 170 km2, which helped mitigate expansion of cyanobacterial blooms. For lake management, to ensure a 90% probability of the mean spring bloom areas remaining under 154 km2 (the 75th percentile of the bloom areas in spring), the total phosphorus should be maintained below 0.073 mg·L-1 under current climatic conditions, which is a 46.3% reduction from the current level. Our modeling approach is an effective method for deriving dynamic nutrient thresholds for lake management under different climatic scenarios and management goals.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Mudança Climática , Teorema de Bayes , Cianobactérias/fisiologia , Eutrofização , Nutrientes , Fósforo/análise , China
15.
Environ Res ; 221: 115260, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36649844

RESUMO

Cyanobacteria can sense different light color by adjusting the components of photosynthetic pigments including chlorophyll a (Chl a), phycoerythrin (PE), and phycocyanin (PC), etc. Filamentous cyanobacteria are the main producer of 2-methylisoborneol (MIB) and many can increase their PE levels so that they are more competitive in subsurface layer where green light is more abundant, and have caused extensive odor problems in drinking water reservoirs. Here, we identified the potential correlation between MIB biosynthesis and ambient light color induced chromatic acclimation (CA) of a MIB-producing Pseudanabaena strain. The results suggest Pseudanabaena regulates the pigment proportion through Type III CA (CA3), by increasing PE abundance and decreasing PC in green light. The biosynthesis of MIB and Chl a share the common precursor, and are positively correlated with statistical significance regardless of light color (R2=0.68; p<0.001). Besides, the PE abundance is also positively correlated with Chl a in green light (R2=0.57; p=0.019) since PE is the antenna that can only transfer the energy to PC and Chl a. In addition, significantly higher MIB production was observed in green light since more Chl a was synthesized.


Assuntos
Cianobactérias , Clorofila A , Cianobactérias/fisiologia , Ficoeritrina , Ficocianina , Aclimatação
16.
Environ Microbiol Rep ; 15(1): 3-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36096485

RESUMO

Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.


Assuntos
Cianobactérias , Ecossistema , Humanos , Mudança Climática , Cianobactérias/fisiologia , Água Doce/microbiologia , Fotossíntese
17.
Microb Ecol ; 86(1): 474-484, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35788422

RESUMO

Rain events in arid environments are highly unpredictable and intersperse extended periods of drought. Therefore, tracking changes in desert soil bacterial communities during rain events, in the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active bacterial communities in the Negev Desert biological soil crust (biocrust). Biocrust samples were collected during, and after a medium rainfall and dry soil was used as a control; we evaluated the changes in active bacterial composition, potential function, potential photosynthetic activity, and extracellular polysaccharide (EPS) production. We hypothesized that rain would activate the biocrust phototrophs (mainly Cyanobacteria), while desiccation would inhibit their activity. In contrast, the biocrust Actinobacteria would decline during rewetting and revive with desiccation. Our results showed that hydration increased chlorophyll content and EPS production. As expected, biocrust rewetting activated Cyanobacteria, which replaced the former dominant Actinobacteria, boosting potential autotrophic functions. However, desiccation of the biocrust did not immediately change the bacterial composition or potential function and was followed by a delayed decrease in chlorophyll and EPS levels. This dramatic shift in the community upon rewetting led to modifications in ecosystem services. We propose that following a rain event, the response of the active bacterial community lagged behind the biocrust water content due to the production of EPS which delayed desiccation and temporarily sustained the biocrust community activity.


Assuntos
Cianobactérias , Ecossistema , Dessecação , Clima Desértico , Cianobactérias/fisiologia , Clorofila , Solo , Microbiologia do Solo
18.
J Biol Chem ; 299(1): 102815, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549647

RESUMO

Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.


Assuntos
Aclimatação , Cianobactérias , Complexo de Proteína do Fotossistema II , Multimerização Proteica , Clorofila/metabolismo , Clorofila A/metabolismo , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química
19.
Sci Total Environ ; 858(Pt 2): 159866, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328255

RESUMO

It is well-established that environmental variability and cyanobacterial blooms have major effects on the assembly and functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosystems. We analysed 9-year planktonic ciliate data series from the surface water of two subtropical reservoirs to elucidate the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other environmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated that 84 %-86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated processes, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes. However, short-term blooms increased the selection pressure and drove 30 %-53 % of the ciliate community turnover. We found that the ciliate community composition was influenced by environmental conditions with nutrients, cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxonomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics of planktonic ciliate communities under cyanobacterial bloom disturbance.


Assuntos
Cilióforos , Cianobactérias , Ecossistema , Cilióforos/classificação , Cilióforos/fisiologia , Cianobactérias/fisiologia , Eutrofização , Lagos/microbiologia , Lagos/parasitologia , Filogenia , Plâncton/classificação , Plâncton/fisiologia , Biodiversidade , Dinâmica Populacional
20.
Water Res ; 225: 119169, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191528

RESUMO

Addition of hydrogen peroxide (H2O2) is a promising method to acutely suppress cyanobacterial blooms in lakes. However, a reliable H2O2 risk assessment to identify potential effects on non-target species is currently hampered by a lack of appropriate ecotoxicity data. The aim of the present study was therefore to quantify the responses of a wide diversity of freshwater phytoplankton, zooplankton and macroinvertebrates to H2O2 treatments of cyanobacterial blooms. To this end, we applied a multifaceted approach. First, we investigated the 24-h toxicity of H2O2 to three cyanobacteria (Planktothrix agardhii, Microcystis aeruginosa, Anabaena sp.) and 23 non-target species (six green algae, eight zooplankton and nine macroinvertebrate taxa), using EC50 values based on photosynthetic yield for phytoplankton and LC50 values based on mortality for the other organisms. The most sensitive species included all three cyanobacterial taxa, but also the rotifer Brachionus calyciflores and the cladocerans Ceriodaphnia dubia and Daphnia pulex. Next, the EC50 and LC50 values obtained from the laboratory toxicity tests were used to construct a species sensitivity distribution (SSD) for H2O2. Finally, the species predicted to be at risk by the SSD were compared with the responses of phytoplankton, zooplankton and macroinvertebrates to two whole-lake treatments with H2O2. The predictions of the laboratory-based SSD matched well with the responses of the different taxa to H2O2 in the lake. The first lake treatment, with a relatively low H2O2 concentration and short residence time, successfully suppressed cyanobacteria without major effects on non-target species. The second lake treatment had a higher H2O2 concentration with a longer residence time, which resulted in partial suppression of cyanobacteria, but also in a major collapse of rotifers and decreased abundance of small cladocerans. Our results thus revealed a trade-off between the successful suppression of cyanobacteria at the expense of adverse effects on part of the zooplankton community. This delicate balance strongly depends on the applied H2O2 dosage and may affect the decision whether to treat a lake or not.


Assuntos
Cianobactérias , Rotíferos , Animais , Zooplâncton/fisiologia , Fitoplâncton , Peróxido de Hidrogênio , Cianobactérias/fisiologia , Lagos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...